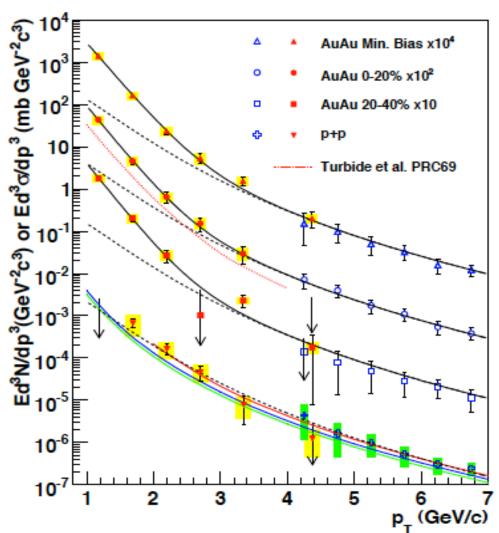
Low mass dilepton production at High p_T

Jianwei Qiu Brookhaven National Laboratory

Based on work with Kang and Vogelsang, arXiv:0811.3662 (PRD), arXiv:0907.4498 (NPA)


RBRC Workshop on "Progress in High p_T Physics at RHIC" RIKEN/BNL Research Center (RBRC), BNL, Upton, NY 11973

Outline

- □ PHENIX Measurement of low mass dileptons
 - Temperature of sQGP in central Au-Au collisions
- □ QCD calculation for low mass dilepton production in hadronic collisions
 - pQCD factorization works as good as that for direct photon production at high pT
- □ Partonic multiple scattering in nuclear medium enhances the production rate of low mass dileptons
 - Opposite sign to that in DIS
- ☐ Summary and out look

The PHENIX measurement

\square Low mass e⁺e⁻ pairs \longrightarrow direct photon production:

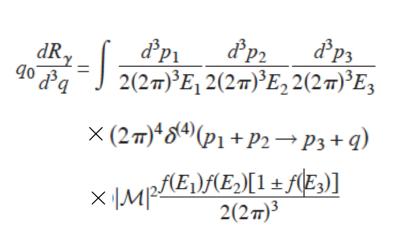
arXiv:0804.4168 (PRL in press)

$$\frac{d^2 n_{ee}}{d m_{ee}} = \frac{2\alpha}{3\pi} \frac{1}{m_{ee}} \sqrt{1 - \frac{4m_e^2}{m_{ee}^2}} \left(1 + \frac{2m_e^2}{m_{ee}^2}\right) S dn_{\gamma}$$

S: process dependent factor

$$\sqrt{s} = 200 \text{ GeV}$$
 $m_{ee} < 0.3 \text{ GeV}/c$
 $1 < p_T < 5 \text{ GeV}/c$

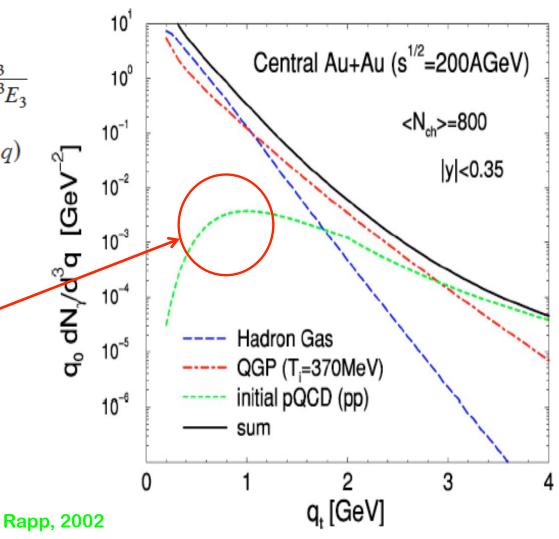
Difference pp vs AA – exponential


Temperature

$$T=221\pm19^{\rm stat}\pm19^{\rm syst}~{\rm MeV}$$

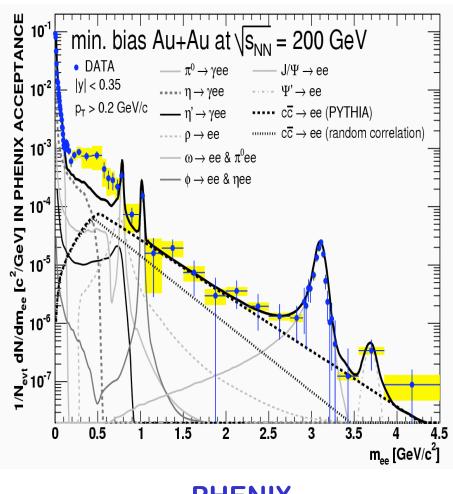
Hadronic production of thermal photons

☐ Photons from various sources:


Turbide, Rapp, Gale, PRC 2004

$$q_0 \frac{d^3 \sigma_{\gamma}^{pp}}{d^3 q} = 6495 \frac{\sqrt{s}}{(q_t)^5} \frac{\text{pb}}{\text{GeV}^2}.$$

for
$$\sqrt{s} = 200 \text{ GeV}$$
 $q_T \le 10 \text{ GeV}$


March 19, 2010 4 Jianwei Qiu

The enhancement also seen in total rate

☐ Fixed target:

$1.16 < Q < 2.56 \mathrm{GeV}$ 3 Excess/DY 2.5 1.5 Excess/N_{participants} (a.u.) 0.5 100 150 200 N_{participants} arXiv:0810.3204

□ Collider:

PHENIX

Questions

How reliable we can calculate the production rate of low mass lepton pairs in hadronic collisions?

Process: $A(p_1) + B(p_2) \to \ell^+ \ell^-(Q) + X$

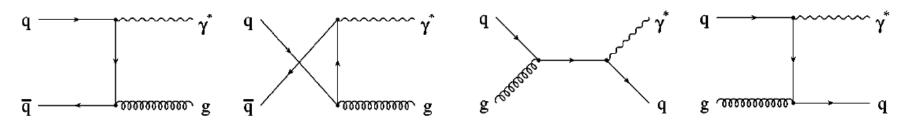
Kinematics: $Q_T^2 \gg Q^2$

"Drell-Yan" - like process:

$$Q_T^2 \gg Q^2 \gg \Lambda_{\rm QCD}^2$$

Clean process for extracting the gluon distribution

"Direct photon" – like process:


Berger, Gordon, Klasen, 1998 Qiu, Zhang, 2001 Berger, Qiu, Zhang, 2002

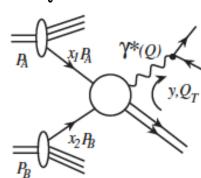
$$Q_T^2 \gg Q^2 \sim \Lambda_{\rm QCD}^2$$

QCD factorization is as good as that for high p_T direct photon production Kang, Qiu,

Lepton pair production at high p_T

☐ Clean probe of gluon without final-state interaction

- Compton subprocess gives a small negative contribution to inclusive Drell-Yan lepton pair production
- It dominates the transverse momentum distribution when $Q_T > \frac{Q}{2}$
- □ Complementary to prompt photon m << Q:</p>

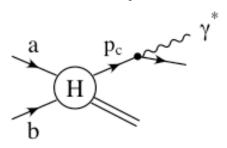

$$\frac{d\sigma_{AB\to \ell^+\ell^-(Q)X}}{dQ^2\,dQ_T^2\,dy} = \left(\frac{\alpha_{\rm em}}{3\pi Q^2}\right) \frac{d\sigma_{AB\to \gamma^*(Q)X}}{dQ_T^2\,dy}$$

☐ But, the rate is lower!

Idea: Lower Q, not too small Q_T

QCD factorization for Drell-Yan

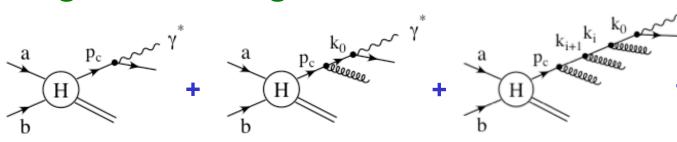
- \square QCD factorization is valid when $Q, Q_T \gg \Lambda_{\rm QCD}^2$:
 - separation of momentum scales
 - photon is produced at $t_y \sim 1/Q << fm$
 - inclusive lepton pair production



$$\frac{d\sigma_{AB\to\ell^+\ell^-(Q)X}}{dQ^2dQ_T^2dy} = \left(\frac{\alpha_{\rm em}}{3\pi Q^2}\right)\sqrt{1 - \frac{4m_\ell^2}{Q^2}}\left(1 + \frac{2m_\ell^2}{Q^2}\right)\frac{d\sigma_{AB\to\gamma^*(Q)X}}{dQ_T^2dy}$$

Power series of α_s

$$\frac{d\sigma_{AB\to\gamma^*(Q)X}}{dQ_T^2dy} = \sum_{a,b} \int dx_1 f_a^A(x_1,\mu) \int dx_2 f_b^B(x_2,\mu) \frac{d\hat{\sigma}_{ab\to\gamma^*(Q)X}^{\text{Pert}}}{dQ_T^2dy}(x_1,x_2,Q,Q_T,y;\mu),$$


- lacksquare QCD factorization is valid even if $Q_T^2\gg Q^2\gg \Lambda_{
 m QCD}^2$:
 - photon is produced at t_v ~ 1/Q >> 1/Q_T
 - large logarithms: $\alpha_s(Q)^* \log(Q_T/Q)$
 - resummation/reorganization

Resummation of fragmentation logarithms

☐ Fragmentation logarithms:

Qiu, Zhang, 2001, Berger, Qiu, Zhang 2002

□ Resummation/reorganization:

$$\begin{split} \mu_F^2 \frac{d}{d\mu_F^2} D_{c \to \gamma^*}(z, \, \mu_F^2; Q^2) | &= \left(\frac{\alpha_{\rm em}}{2\pi}\right) \gamma_{c \to \gamma^*}(z, \, \mu_F^2, \, \alpha_s; \, Q^2) \\ &+ \left(\frac{\alpha_s}{2\pi}\right) \sum_{d} \int_{z}^1 \frac{dz'}{z'} P_{c \to d} \left(\frac{z}{z'}, \, \alpha_s\right) D_{d \to \gamma^*}(z', \, \mu_F^2; \, Q^2) \end{split}$$

☐ Cross section:

Pert JaDir JaFrag

$$\frac{d\hat{\sigma}_{ab\to\gamma^*(Q)X}^{\mathrm{Pert}}}{dQ_T^2\,dy} = \frac{d\hat{\sigma}_{ab\to\gamma^*(Q)X}^{\mathrm{Dir}}}{dQ_T^2\,dy} + \frac{d\hat{\sigma}_{ab\to\gamma^*(Q)X}^{\mathrm{Frag}}}{dQ_T^2\,dy} + \frac{d\hat{\sigma}_{ab\to\gamma^*(Q)X}^{\mathrm{Frag}}}{dQ_T^2\,dy} \longrightarrow \frac{d\hat{\sigma}_{ab\to cX}}{dp_{c_T}^2\,dy} \otimes D_{c\to\gamma^*X}$$

Input fragmentation functions

- lacksquare "Drell-Yan" like process $Q_T^2\gg Q^2\gg \Lambda_{
 m QCD}^2$: Berger, Qiu, Zhang 2002
 - lepton pair is mainly from decay of a virtual photon of mass ${\it Q}$
 - $-Q(\gg \Lambda_{\rm QCD})$ is a natural regulator for the fragmentation logs
 - Input fragmentation functions are purely perturbative
- \square "Direct photon" like process $Q_T^2 \gg Q^2 \sim \Lambda_{\rm QCD}^2$:

 Kang, Qiu, Vogelsang 2009
 - $Q_T(\gg \Lambda_{\rm QCD})$ is a perturbative scale, but $Q(\sim \Lambda_{\rm QCD})$ is not
 - the lepton pair can be produced non-perturbatively

$$|P_{c}|^{2} \otimes |P_{c}|^{2} \otimes |P_{c}|^{2} + |P_{c}|^{2} + |P_{c}|^{2} + |P_{c}|^{2}$$

$$D_{f \to \gamma^*}(z, \mu_0^2; Q^2) \equiv D_{f \to \gamma^*}^{\rm QED}(z, \mu_0^2; Q^2) + D_{f \to \gamma^*}^{\rm Nonpert}(z, \mu_0^2; Q^2)$$

Model the input fragmentation functions

☐ Extract the input fragmentation functions from data:

- input fragmentation functions are process independent
- "derive" or "model" the functional form of the distributions
- fix all unknown parameters by fitting available data

☐ Our model:

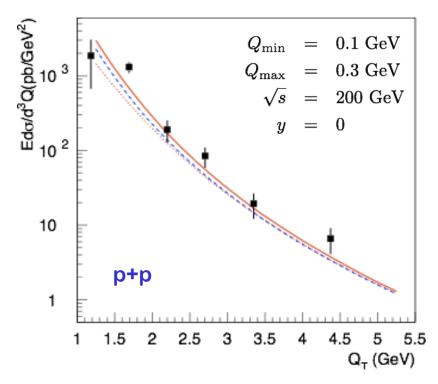
- "QED" part:

$$\begin{split} D_{q \to \gamma^*}^{\text{QED(0)}}(z, \, \mu_0^2; \, Q^2) &= e_q^2 \left(\frac{\alpha_{\text{em}}}{2\pi}\right) \left[\left(\frac{1 + (1-z)^2}{z}\right) \ln \left(\frac{\mu_0^2}{Q^2/z + \lambda^2}\right) - \left(\frac{Q^2}{Q^2/z + \lambda^2} - \frac{Q^2}{\mu_0^2}\right) \right], \\ D_{\bar{q} \to \gamma^*}^{\text{QED(0)}}(z, \, \mu_0^2; \, Q^2) &= D_{q \to \gamma^*}^{\text{QED(0)}}(z, \, \mu_0^2; \, Q^2), \quad D_{g \to \gamma^*}^{\text{QED(0)}}(z, \, \mu_0^2; \, Q^2) = 0. \end{split}$$

- "hadronic" part:

$$D_{q \to \gamma^*}^{\text{Nonpert}}(z, \mu_0^2; Q^2) \equiv \kappa D_{q \to V}(z, \mu_0^2) \frac{4\pi\alpha_{\text{em}}}{f_V^2} \left(1 - \frac{Q^2}{m_V^2}\right)^3$$

Further assume: $m_V = m_\rho$, $f_\rho^2/4\pi = 2.2$, and $D_{f\to V} \approx D_{f\to \pi}$


- fitting parameters: $\lambda(>\Lambda_{\rm QCD}),\ \kappa(\sim 1)$

Invariant Cross Section

□ Definition:

$$E rac{d\sigma_{AB o \ell^+\ell^-(Q)X}}{d^3Q} \equiv \int_{Q_{\min}^2}^{Q_{\max}^2} dQ^2 \, rac{1}{\pi} \, rac{d\sigma_{AB o \ell^+\ell^-(Q)X}}{dQ^2 \, dQ_T^2 \, dy}$$

□ Role of non-perturbative fragmentation function:

Data from PHENIX: arXiv:0804.4168

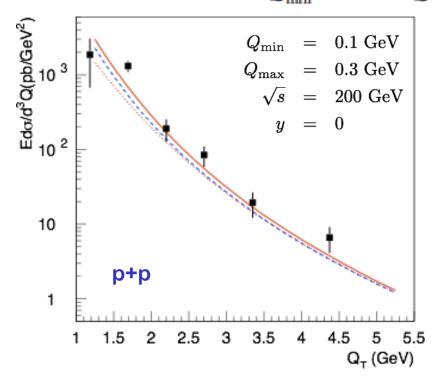
Input FF:

$$D(z, \mu_0) = D^{\text{QED}}(z) + \kappa D^{\text{NP}}(z)$$

❖ QED alone (dotted):

$$\kappa = 0$$
 at $\mu_0 = 1$ GeV

QED + hadronic input (solid):


$$\kappa = 1$$
 at $\mu_0 = 1$ GeV

Hadronic component of fragmentation is very important at low Q_T

"Direct photon" approximation

□ Dilepton production vs direct photon production:

$$\begin{split} E\frac{d\sigma_{AB\to\ell^+\ell^-(Q)X}}{d^3Q} &\approx \frac{d\sigma_{AB\to\gamma(\hat{Q})X}}{dQ_T^2 dy} \int_{Q_{\min}^2}^{Q_{\max}^2} dQ^2 \bigg(\frac{\alpha_{\rm em}}{3\pi^2 Q^2}\bigg) \sqrt{1 - \frac{4m_\ell^2}{Q^2}} \bigg(1 + \frac{2m_\ell^2}{Q^2}\bigg) \\ &\approx \frac{\alpha_{\rm em}}{3\pi} \ln \bigg(\frac{Q_{\max}^2}{Q_{\min}^2}\bigg) E_\gamma \frac{d\sigma_{AB\to\gamma(\hat{Q})X}}{d^3Q} \end{split} \qquad \qquad \text{Direct photon cross section} \end{split}$$

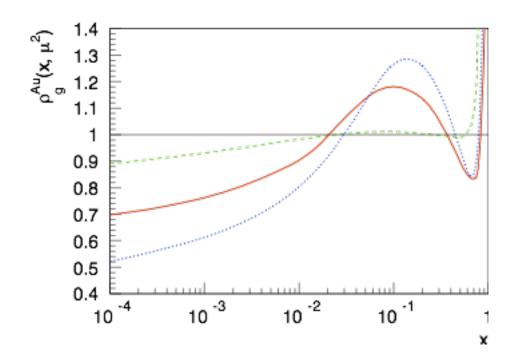
Data from PHENIX: arXiv:0804.4168

Inclusive NLO direct photon (blue-dashed)

Gordon, Vogelsang, 1993

Direct photon code has similar non-perturbative fragmentation functions

Nuclear dependence


- ☐ In a gas target:
 - Nucleons have a large empty space between them
 - They are quantum mechanically incoherent for the short-range strong interaction
- ☐ In a nuclear target:
 - Nucleons are very close to each other partonic rescattering
 - They are quantum mechanically coherent
 - ❖ The hard probe is not necessarily "local" small x
- ☐ Magic of heavy ion beams:
 - Very large hadronic total cross section
 - Hot medium produced from the interaction between colors (soft gluons) of colliding ions

Modern nuclear parton distributions

□ Definition:

$$f_i^{p/A}(x,\mu^2) \equiv \rho_i^A(x,\mu^2) f_i^p(x,\mu^2)$$

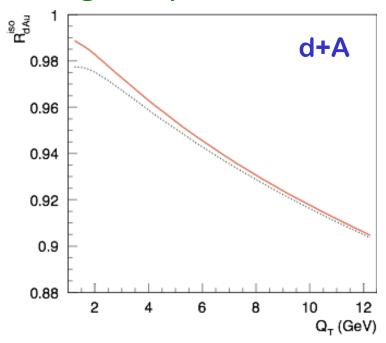
☐ Three sets nuclear gluon distribution for A=197:

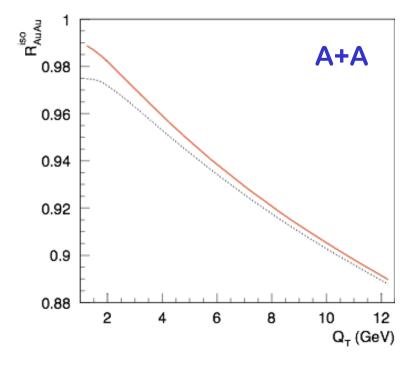
Solid: EKS98

Dashed: FS2003

Dotted: EPS08

All nPDFs fit existing data!


Isospin effect in nuclear collisions


☐ Definition:

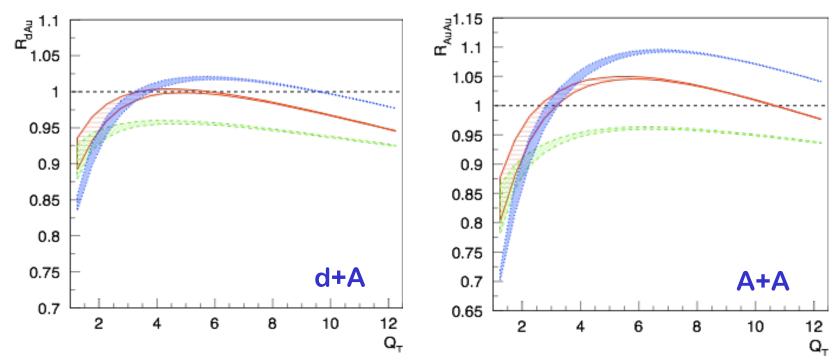
$$R_{
m dAu}^{
m iso} \equiv rac{rac{1}{2A}d^2\sigma^{
m dAu}/dQ_Tdy}{d^2\sigma^{pp}/dQ_Tdy}$$

$$f_i^p(x,Q^2) \rightarrow \left[Z \cdot f_i^p + (A-Z) \cdot f_i^n\right]/A \qquad i = q, \bar{q}, g$$

Strong isospin effect:

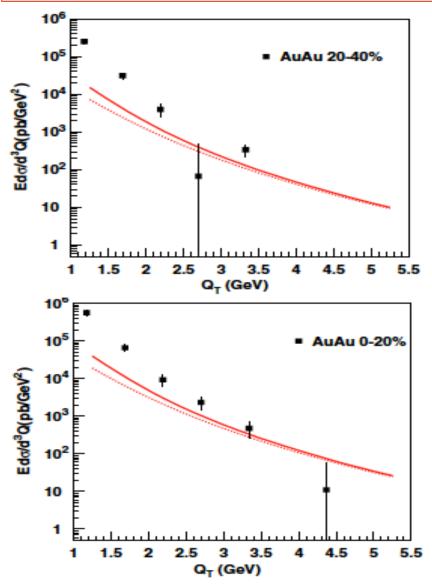
$$\sigma_{qg} \propto \frac{4}{9} f_u^n + \frac{1}{9} f_d^n = \frac{4}{9} f_d^p + \frac{1}{9} f_u^p \qquad f_u^p > f_d^p \quad \longrightarrow \quad \sigma^{nn} < \sigma^{np} = \sigma^{pn} < \sigma^{pp}$$

$$f_u^p > f_d^p$$

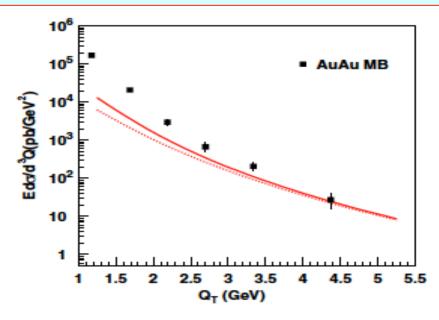

$$\rightarrow \sigma^{nn} < \sigma^{np} = \sigma^{pn} < \sigma^{pp}$$

Sensitivity on gluon distribution

■ Nuclear modification factor:


$$R_{\rm dAu} \equiv \frac{1}{\langle N_{coll} \rangle} \frac{d^2 N^{\rm dAu}/dQ_T dy}{d^2 N^{pp}/dQ_T dy} \stackrel{\rm min.bias}{=} \frac{\frac{1}{2A} d^2 \sigma^{\rm dAu}/dQ_T dy}{d^2 \sigma^{pp}/dQ_T dy}$$

□ RHIC kinematics – if dominated by single scattering:



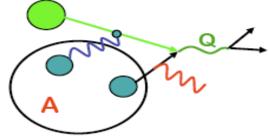
- The band is given by $\kappa=1$ (top lines) and $\kappa=0$ (bottom lines)
- RAA follows the feature of gluon distribution if turns off isospin

AuAu data: shadowing + isospin only

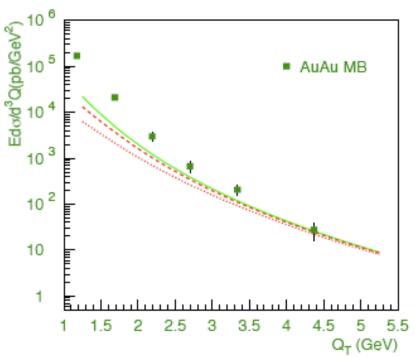
- EPS08 nPDFs

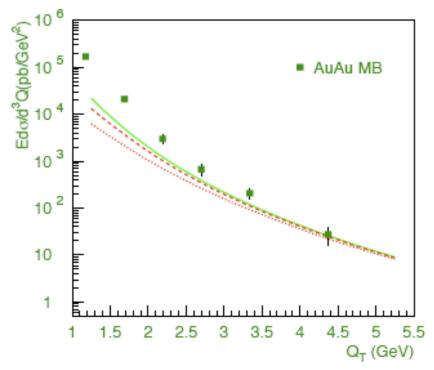
$$\kappa = 1$$
(solid), $\kappa = 0$ (dotted)

Clear enhancement at low Q_T


Effect beyond single scattering?

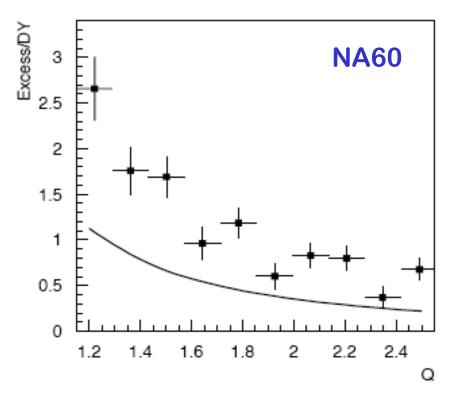
March 19, 2010 18 Jianwei Qiu

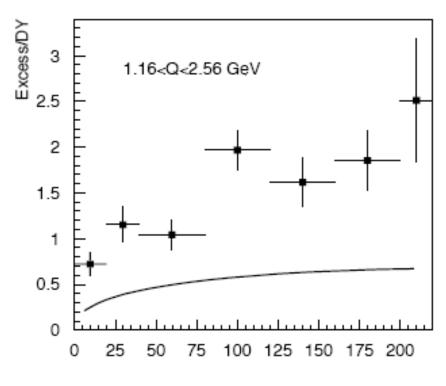

Other nuclear effect: multiple scattering


☐ Initial state multiple scattering – power correction:

Guo, 1998

Unlike DIS, power correction to lepton pair production is positive





Power correction from cold nuclear matter (solid) is not enough!

Cross check: lepton pair cross section

lacksquare Power correction to inclusive total rate: $d\sigma^{AA}/dQ^2$

- Power correction from cold nuclear matter is also too small for the enhancement in NA60 data
- ❖ But, the difference is smaller than that seen in RHIC data

Summary and outlook

- □ Hadronic production of low mass lepton pairs at high p_T is perturbatively calculable
 - QCD factorization is as good as that for direct photon production
- ☐ Low mass lepton pair production is complementary to direct photon production in extracting gluon distribution
 - Cleaner lepton signals, no complication on isolation cut, but, relatively lower rate
- □ Nuclear enhanced power corrections from cold nuclear matter alone can not explain the observed excess of lepton pair production at low p_T in AuAu collisions:
 - Thermal photons from sQGP, ...

Thank you!

Backup transparencies